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We study the use of dispersion relations, modified to violate causality, as a tool to limit a fundamental
noncausal length. We find that unless the usual dispersion relations are found to be violated, noncausal dis-
persion relations give no new information. This means that the only presently believable limit on a non-

causal length is given by dimensional analysis.

I. INTRODUCTION

HE principle of microcausality, that fields com-
mute at spacelike separations, enters crucially
into the proofs of dispersion relations.! The strongest
evidence for the validity of microcausality lies in the
agreement of the forward pion-nucleon dispersion rela-
tions with experiment.? However, to understand exactly
to what degree microcausality is valid, it is necessary to
explore the consequences of noncausal models. Ideally
one would like to show that these models make predic-
tions, which may be in the form of modified dispersion
relations, that disagree with experiment.

Noncausal models usually postulate some functional
dependence for the commutator in spacelike regions,
e.g., an exponential falloff in |x| or in (|x|2—ax?)1/2
Generally these models contain a parameter measuring
the distance within which violations of causality are
appreciable. This parameter is usually referred to as a
“fundamental length.” It may enter as the decay con-
stant in an exponential falloff of the commutator for
spacelike distances, or it may measure the size of some
spacelike hyperboloid outside of which the commutator
vanishes.

Given a particular noncausal model, one can follow
through the derivation of forward pion-nucleon dis-
persion relations to investigate the analytic properties
of the amplitude. This has been discussed in some detail
by Oehme.? Generally one finds that the noncausal

amplitude has singularities in the energy plane beyond

those dictated by unitarity. Using Cauchy’s theorem,
one can relate the real and imaginary parts of the physi-
cal amplitude in a similar manner to the usual dispersion
relations, but with modifications due to the additional
singularities. The fundamental-length parameter con-
trols the size of these modifications.

Our objective in this paper is to study what can be
said about the bounds on a fundamental length from
comparison of the experimentally measured forward
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pion-nucleon amplitudes and the predictions of a par-
ticular simple model. This subject has been investigated
extensively by Lindenbaum and his co-workers using a
noncausal model in which the amplitude develops an
essential singularity at infinity.* They claim disagree-
ment between the predictions of this model and experi-
ment for the symmetric pion-nucleon forward amplitude
when the fundamental length is > 10~ cm. For reasons
to be discussed below, we conclude that this disagree-
ment relies heavily on unphysical assumptions about
the precise form of the asymptotic amplitude and does
not in fact imply an upper bound on such a fundamental
length.’ The important result is that the usual causal
dispersion relations are presently satisfied within ex-
perimental errors by existing data.? We indicate below
the difficulties involved in trying to limit a fundamental
length in this model.

We find that particular noncausal models do not yield
limits on a fundamental noncausal length as long as the
usual causal dispersion relations are satisfied within
experimental error. This means that it is important to
test the usual dispersion relations, and not noncausal
relations, until a violation is found. We finally conclude
that the only presently valid estimate of a limit for a
fundamental length is given by dimensional analysis;
since dispersion relations seem to work to an energy of
20 BeV, it is likely that a fundamental length is smaller
than #c¢/20 BeV or 1071 cm.

The specific model we are discussing postulates that
the field commutators vanish identically in the region
outside of a spacelike hypersurface, x*—x2< — 2, rather
than outside the light cone, x?—%2<0. Actually this
sort of breakdown in microcausality is not possible in
the framework of axiomatic field theory, where it has
been shown that the vanishing of commutators within
any open spacelike region necessitates their vanishing
for all spacelike separations.® Nevertheless, we believe
that this model is worth discussing because it is mathe-
matically simple and furthermore is the model upon
which previous assertions concerning a fundamental
length, with which we disagree, have been based.* In
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addition, a breakdown in microcausality might be ac-
companied by further violation of the principles of
axiomatic field theory, such as strict Lorentz invariance
at short distances

II. DISPERSION RELATION FOR
NONCAUSAL CASE

The amplitude we consider throughout this paper is
the symmetric pion-nucleon amplitude in the forward
direction :
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Here w is the laboratory energy of the pion, and the
normalization of the amplitude is the usual one, with
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In the forward direction the nucleon cannot change
helicity; thus, there is only one amplitude. The ampli-
tude is divided into real and imaginary parts by

JHw)=D*(w)+id*(w). (3)

The usual causal, once-subtracted dispersion relation
is written!
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where £ is the magnitude of the pion laboratory momen-
tum, p is the pion mass, and M is the nucleon mass.
The residue of the nucleon pole and the subtraction
constant are given experimentally by (in natural units:
h=c=u=1)7

Finally we note that A+ (w) is related to the total pion-
nucleon cross sections by the optical theorem:

At (w)= (k/87) (010t™ P () F+040t™ P (@)). (6)
In the noncausal case we assume
(I[7(),57(0)][p)=0 Wr=xld—x*< L. (7)

Here j(x) is the pion current and |p) represents a
single-nucleon state. It can easily be shown that 38 with
this structure for the commutator, the amplitude has an
exponential singularity at infinity in the upper half
plane which is no worse than e~*’ This singularity
arises from the sharp spatial cutoff imposed on the
commutator. It is interesting to note that in this model
no singularities can appear at finite w in the upper
half-plane.

for
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Let us now define a new function f¢t(w) from the
noncausal amplitude by

fot(@)=e®tft(w). ©)

Clearly f¢*(w) is still analytic in the upper half w plane.
Since f*(w) is no more singular than ¢! at infinity,
fo*(w) is polynomially bounded at infinity. Still follow-
ing Oehme,®® we can write a dispersion relation for
fot(w). Writing this equation in terms of A+(w) and
D*(w) with the assumption of a single subtraction gives

Dt (w) coswl~ A (w) sinwl
J?k? cos(u?/2M)
M= (u/200) [~ ¥/ 2M)*]
2k? /‘w’dw’[A+(w’) cosw'I+DH(w') sinw’l]

+—P
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=D*(u) cosul+-

One would like to use the optical theorem to deter-
mine A+ (w) where the pion-nucleon total cross sections
are known. However, it might be that a breakdown of
causality is associated with a breakdown of the optical
theorem as well. Nevertheless, as Oehme has pointed
out,’ such a deviation from the usual unitarity condi-
tions is not required in a noncausal theory such as that
considered here. Thus we will consider the optical
theorem derived from the usual unitarity condition as
still valid and use it to determine 4*(w).

Let us temporarily assume that the total cross sec-
tions, and therefore 4% (w), are well known at all ener-
gies. Then Eq. (9) becomes an integral equation for
D*(w). We can immediately establish two important
properties of this equation. First we note that D+ (w)
obtained from the usual dispersion relation, Eq. (4),
is also a solution to Eq. (9). This can be checked either
by direct substitution or simply by noting that f(w) as
obtained from Eq. (4) is a polynomially bounded func-
tion analytic in the upper half w plane, and such an
analytic function multiplied by e%® retains these prop-
erties, allowing us to write Eq. (9). Second, it is clear
that for a given A+(w), the solution to Eq. (9) is not
unique. For example, any solution for D+(w) can have
terms like (coswm— cosum) when 0<m<]/ arbitrarily
added to it to give other solutions.

This arbitrariness in the solution is physically rea-
sonable. In order to obtain Eq. (9), one multiplies the
amplitude by e*! to cancel the effects of noncausal be-
havior at Lorentz distances up to I. In so doing, one
also cancels possible noncausal behavior at smaller dis-
tances m</. Hence any amplitude with this form of
noncausal behavior over a distance m<1, and in par-
ticular the causal amplitude with 7= 0, satisfies Eq. (9).
We note that the arbitrary terms which one can add to
the solution to Eq. (9) are of the same order as the non-
causal effects one is looking for. According to Eq. (8),
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one expects to see evidence of noncausal behavior in
f*(w) to first order in wl, but the arbitrariness of the
solutions to Eq. (9) appears in terms of order wm for
any m<I. Clearly the two effects can be comparable.

We are confronted with a serious difficulty in making
use of Eq. (9). One would like to use this equation to
predict the real part of the amplitude for comparison
with experiment. However, one must first impose addi-
tional constraints on the function Dt(w) in order to
specify it uniquely. The exact solution which is singled
out depends sensitively on the constraints imposed and
its physical significance depends on the physical basis
of the constraints. In Sec. ITI we discuss the manner in
which Lindenbaum and his collaborators* choose a solu-
tion to this equation.

III. PARTICULAR NONCAUSAL SOLUTION

In order to solve Eq. (9) for D*(w), Lindenbaum and
co-workers? do not specify A*+(w) for all energies but
rather specify A*(w) for w less than some experimental
cutoff @, and then specify Imjot(w)=coswl A+ (w)
+sinwl Dt (w) for energies above Q. Specifically they
assume Im fo*(w) is a smooth function of the form

Imfi*(w)= (k/8m)(at-B/w?),

where «, 8, and p are parameters chosen to fit the
experimental total cross section when /<1 and
Imfot(w)~Imf(w). They pick 1/>%>u so the as-
sumed behavior is smooth at 2. With these assumptions
Eq. (9) was solved iteratively for D*(w).

The strong assumption made in Eq. (10) is that
Ime®™! f+(w) is a smooth function of w for a particular
value of /. Behavior parametrized by distances other
than ! is specifically excluded. This assumption has the
serious difficulty that, applying the optical theorem, it
does not yield a positive-definite cross section. In fact,
the cross section @™ ?(w)+awi™ P(w) is given at high
energies by

(10)

Teot™ P(w) F 00t ™ P(w) —> a coswl
W —>00

O e fot(w) sinwl.  (11)

w

This expression clearly changes sign between wl/=nmr
and wl= (n+1)w. This problem of a negative cross sec-
tion is unavoidable if one requires Ime®!f+(w) to be
asymptotically smooth. This assumption rules out the
physically interesting possibility of the total cross sec-
tion oscillating about a positive constant. Let us note
here that the original model does not require an oscillat-
ing asymptotic cross section at all; all oscillations in the
amplitude might appear only in the real part.

The solution obtained by Lindenbaum?* with /=10-16
cm disagrees with the experimentally measured D*(w)
over a wide range of energies. The question is whether
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the disagreement with the data reflects on the assump-
tion of a fundamental length or rather on the inappro-
priateness of the constraint imposed to obtain the solu-
tion. For several reasons we believe the latter interpreta-
tion. First of all, we know that D+(w) as predicted by the
usual dispersion relation agrees with the data and is also
a solution to the modified relation in Eq. (9). Secondly,
by making Imjst(w) asymptotically smooth, a very
particular oscillatory behavior was assumed for the
total cross section, which actually became negative for
certain values of the energy. Finally, we note that the
same A+(w) was always assumed for w less than Q; so
the difference between the Lindenbaum solution to Eq.
(9) and the prediction of the usual dispersion relation
must lie entirely in assumptions on the amplitude for w
greater than , where there are no measurements as yet.
We have done detailed calculations with different
asymptotic assumptions to verify this last point. Thus
the disagreement of this special solution with the data
does not originate in any experimentally measured
quantity. It is instead only the result of a specific
assumption about the very-high-energy behavior of the
amplitude, an assumption which requires an oscillatory
behavior of the total cross section which need not appear
in the model and which violates unitarity rather vio-
lently. Since it is this calculation on which estimates of
a fundamental length are based, we conclude that the
validity of these estimates is in serious doubt.

IV. CONCLUSION

It remains to discuss in what ways noncausal the-
ories, such as that incorporated into Eq. (9), might be
of use in putting limits on a fundamental length. The
outlook unfortunately is not good. Having established
the arbitrariness of the solution to Eq. (9) for a given
A+ (w), we are at a loss as to how to specify which solu-
tion is physically meaningful. Extrapolations such as
that employed by Lindenbaum’s group,* being un-
supported by the data, cannot yield physically mean-
ingful results.

Other models, such as those discussed by Oehme,?
in which the amplitude develops additional singularities
in the finite energy plane, have the handicap that one
cannot measure the amplitude along these new sin-
gularities. As pointed out by Oehme,? this introduces
ambiguities in the amplitude analogous to those in the
above model. Thus, since the usual causal dispersion
relations are satisfied within experimental limits, these
relations derived from noncausal models also add no
further information.

We do not wish to imply here that further effort
should not be expended on testing the usual dispersion
relations. It would indeed be interesting if the usual
analyticity conditions were violated. If further experi-
ments do yield discrepancies in the usual dispersion
relations, then a search should be made for a noncausal
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relation to fit the data. In other words, Eq. (9) might
be useful if the measured amplitude did not satisfy the
usual dispersion relation within experimental error.
Then if Eq. (9) were satisfied only for / larger than some
lo it would appear that causality was violated to dis-
tances of lo. However, as long as the usual dispersion rela-
tion fits the experiments, Eq. (9) is of no use in bounding a
Sfundamental length. :

In conclusion, the only believable limit on a funda-
mental length at this time is given by the dimensional
argument that since dispersion relations work at ener-
gies up to 20 BeV, a fundamental noncausal length is
unlikely to be much larger than #c/(20 BeV)= 1015 cm.
It should be understood that this is a purely dimensional
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argument and should be viewed with the appropriate
caution.?
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The structure of an equal-time commutator involving the time component of the axial-vector current and
its divergence is investigated. It is shown that the value of the equal-time commutator, formerly given by
a power-series expansion, can be obtained in a closed form.

I. INTRODUCTION

HE model due to Sugawara! is a concrete realiza-

tion of a theory of hadron dynamics envisaged

by Dashen and Sharp? based on the idea that the vector

currents V,* and the axial-vector currents A4, should

be considered as local observables in terms of which one

can formulate the theory. The dynamical content of

Sugawara’s model resides in an explicit representation

of the energy-momentum tensor of the hadrons ®* as
a bilinear form

O#(x)= (1/20)[V#@) Ve @)+ V2 (®) Vik(x)
— gV () Vi) 1+ (Ve 4). (1.1)

Dashen and Frishman?® then pointed out that ©# as
given by Eq. (1.1) can be put in the form

0#(2)= 0.+ (x)+ 0+ (x),
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versity of Khartoum, Sudan.

1 H. Sugawara, Phys. Rev. 170, 1659 (1968); that the Sugawara
O+ should be interpreted as a limit was discussed recently by
S. Coleman, D:. Gross, and R. Jackiw, 7bid. 180, 1359 (1969).

2R. F. Dashen and D. H. Sharp, Phys. Rev. 165, 1857 (1968);
D. H. Sharp, zbid. 165, 1867 (1968).

(139 él) F. Dashen and Y. Frishman, Phys. Rev. Letters 22, 572
9).

(1.2)

where 0. are bilinear forms of the same structure as @#
but constructed out of currents Jy#=3(VitA4.#).
They then demonstrated that ©.* are separately
conserved, commute with each other at equal times, and
transform into one another under parity. This feature
then leads to the invariance group P,®P_, with P,
and P_ being two commuting Poincaré groups which
transform into each other under the parity operation.
These authors then argued that this aspect of the model,
which they called too much symmetry, requires parity
doubling of the spectrum of particles.

A way out of this difficulty was proposed by Cronin
and Guralnik* by insisting that @, should be identically
equal to O_ instead of being related to it by parity. For
this equality to hold one must abandon the algebra of
fields® which the currents V;* and A+ are supposed to
satisfy in Sugawara’s model. Instead, these authors
proposed an algebra with g-number Schwinger terms.
For ©# they adopt the same form as (1.1), i.e., they
write

Pwr=0 +/»W+ O_m ,
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